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i. iRmnOJcriaq AND SLMARY.
p.

This paper describes a FORWRAN subroutine called 1W4, for approximating ay

one of the following four integrals:

(1. 1) f fxdx

(1.2) A f(t)dt (f not oscillatory, A finite)

(1.3) F(t)dt (F oscillatory, A finite) r eed,.€

A' " i c i t z o.

(1.4) f(t)dt (A,B finite) .

We remark in view of (1. 2) and (1. 3) that .

B-
J 4f(t)dt =J:B f(..t)dt . 2-

A description of the parameters of the subroutine WEW and the method of

calling it are given in Sec. 6 of this paper; the user who does not wish to

fconcern himself with the special powers or pitfalls of this subroutine should

skip directly to Sc6

I The fornulas that this subroutine is based on are most powerful when the

integrand f does not have a singuZarity (a singularity is a point where

df/dx does not exist) in the interior of the range of integration; however,

singularities at end-points of intervals are allowed. Indeed, it is in the

L " 'e cases where f has singularities at the end-points of the range of integration,

A
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-that the subroutine WANEW is superior to other subroutines. e concede that

cussian quadrature which houses the singularities of the integrand in the

weight function [1,2 ] may be superior to the VREWmethods. Hawever, no vethod [8]

is superior to the ROW mthod if the exact nature of the singularities at

end points of intervals are unmnown, or ignored. The subroutines may then

be used either directly, or be a part of a polyalgorithm [4,5] which gets

accurate results in spite of singularities of the integrand at end-points

of an interval of integration.

We enphasize that the JNEW subroutine yields accurate results in spite

of singularities at end points of an interval. The presence of singularities

at interior points of the interval of inte&rations amy considerably slow up

the rate of convergence. If the function f in the integral

fd

(1.5) c d f(t .)dt

(Ohere c or d may be either finite or infinite) has singularities in the

interval (c, d) , then in order to achieve best accuracy we strongly recommid

replacing (1.5) by a finite number of integrals with the property that each

only has singularities at the end-points of an interval. For example, if the

function f in (1.5) has singularities at u and v ,where c < u<v< d

then we recommend replacing (1.5) as follows:

b I Ifd ff~d u fv jd

(1.6) f(t)dt = f(t)dt + f(t)dt + f(t)dt
j J. + f

Sc ~ c u

Each of these integrals may now be accurately approximated by an appropriate

formula used to approx:h'ate (1.2), (1.3) or (1.4).

• ,I= . ."- -....
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The subroutine WVEW is based on the theory of [6,71; see also the summary

paper [8]. In Sec. 2 we briefly sumrmarize the transformation used to transform

each of the integrals (1.2), (1.3) or (1.4) into (1.1), the error when the

trapezoidal formula is applied to (1.1), as well as a more accurate description

of the type of integrals for which the fornmulas for approxuting (1.1), (1.2),

(1.3), and (1.4) are most effective.

Section 3 describes the basis of the algorithm by combining trapezoidal

and midordinate rules. In Sec. 4 we give some examples which illustrate the

application of the algorithm. In Sec. 5 we illustrata some pitfalls of the

algorittm, arising as a consequence of inaccurately computing the integrand

near a singularity. We also illustrate methods of circunventing these pitfalls.

In Sec. 6 we give a precise description of the subroutine

UNEW (INRML, A, B, EPS,IP)

and of the role of the parameters in this subroutine. We also give a flow-

chart description of the main ideas of the subroutine.

In Sec. 7 we give an explicit FORIRN listing of the subroutine WNE4.

i I
K .
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2. BASIC IDEAS, TRANSFO.VATIONS AND ERROR.

The algorithms of the program are all based on the trapezoidal formula

(2.1) f(x)dx : h j f(kh)

where h > 0 is the step size. If f has no singularities on ( (e.g.

if a single formula is used to describe f on the whole interval (-=,=))

then it may be shown that the error of for=ala (2.1) satisfies

(2.2) jerror < C -c/h

where C and c are positive constants that are independent of h . Thus if

h is replaced by h/2 , then the correct nurber of significant figures in

the approximation (2.1) doubles. Best results are achieved for (2.1) if in

addition to being analytic on 1. , f also satisfies the inequality

(2.3) If(x)I < C'ela x I

on the real line IR , wt-ere C' and a are positive constants. In this case

relatively few points are required in the trapezoidal sum to achieve the

desired accuracy. If f decreases to zero at an algebraic rate, as t 0 too

the formula (2.1) is still accurate, however in that case many vore points

are required to achieve a desired accuracy. This latter situation can sonetimes

be remedied by use of the transfon rtion

4

* .- 5-
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2
(2.4) t = xeX

and then applying the trapezoidal formula to the transfomed integral.

The integral (1.2) is transformed into the integral (1.1) by ueans of the

transformation

Ix
(2.5) t. A +e

* Applying (2.1) after rvking the transformation (2.5) results in the quadrature

formula

(2.6) Jf(t)dt h T ehf(A+el h )
JA k - o

(We remark here, that

(2.7) f(t)dt -- f(-t)dt - h I ehf(B-eh) .)
--B k=-ao

The formula (2.6) is particularly accurate when used to approximate integrals

for which the integrands have an algebraic-type singularity at A , and which

approach zero at an algebraic rate as x , - , such as integrals of the form

f t-(t+l)'dt , or t 3-(logt )(+t2) dt

If A= 0, the ideal boundedness condition on f corresponding to (2.3) is

(2.8) !f(t) <_
* 1= ' t> l 1



if (2.3) is satisfied then after making the transformation (2.5) (with A = 0)

one gets an integral over JR for which the integrand satisfies (2.3).

The integral (1.3) is transformed into the integral (1.1) by means of the

transformation

(2.9) t = A + log{ex + (l+e2X) }

After making the transformation (2.9) and applying (2.1), we get*

(2.10) : f(t)dt -% h 1 (l+e-2kefA + kh
(.1) JA f Ak=---e A +e .

This formula is best suited for the evaluation of integrals for which the

integrand f(.) has an algebraic-type singularity at t = A and which be-

haves in an oscillatory mr-nner as t . Examples of such integrals are

t'i/3 e-tcos(3t)dt , or log[l - snt]etdt . If A 0 in (1.3),
.100

J0 0o t ett fA=0in1.,

the ideal boundedness condition on f corresponding to (2.3) is

,I- 0 < t<1
(2.11) f W)I <

C 1[C'e- t  t > I•

11e recormend care in evaluating loge kh + /1+e~ h  when ekh  is

small (e.g. if ekh < .1) In this case, the formula
i

logikh + dt = (_ 1) e (2j+l)kh

0 ':l+t Y'j=f)

k This ..ethod .,f ciutation is built into the su-routine NTN .

- --
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if f satisfies (2.11) then after making the transformation (2.9) (with A = 0)

one gets an integral over R. for which the integrand satisfies (2.3). If f

is oscillatory on (0,-) but does not decrease to zero at the rate. (2.11), as

in the case of the evaluation of some seni-infinite transforms, such as

F0 t-f/ 3 Jo(at)dt the formula (2.10) is still quite accurate. However, in this

case a large number of points are required to achieve a desired accuracy. This

situation may be remedied by an Euler technique, such as that described in [i].

The integral (1.4) is transformed into the integral (1.1) by means of the

transfornation

A+Bx
(2.12) 

t -
l+ex

The boundedness condition on f corresponding to (2.3) is

5, (2.13) If(t) C <C(t-A) (B-0) j - I  A < t< B

where C and a are positive constants. Making the transformation (2.12)

and then applying the trapezoidal formula, we get

B  e h A+ Bekh
(2.14) f(t)dt a (B-A)h - e kh) 2 k)

*Another method of circumventing this difficulty is to evaluate
[Coe-xtt-1/30act
Joe) = (at)dt for e.g. X= 1/2,1/4 and 1/8 , and then extrapolate

to the lidit X=0

----- -
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3. BASIS OF AL TM.91UT.

Let us define T h(f) and I (f) by

Th(f) = h I f(kh)
km-co

(3.1)

. (f) = h I f((2k-l)h/2)

Thus the sur. on the right hand side of (2. 1) is Th(f) Furthermore, it

follaws that

(3.2) Th/2(f) = [Th(f) + Mh(f)]

Let us start with h = 1 (say) and then compute Th(f) The bound (2.2)

shows that Th/2 (f) has at least twice as many significant figures as Th(f)

Next, let us coapute (f) , as well as the difference

(3.3) ITh(f)-Mh(f) I = e/3 12[f'0 f(x)dx-Th(f)1J

Thus, for sufficiently small e

(34) (1f x)dx-Th, 2 (f f (x)dx Tf)+V Y U(.C) <C

In practice, we cannot sun all of the terms in the infinite sums (3. 1).

The asst-rption (2.3) then offers a convenient stonping criteria. Sumpose that

ix.
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we stop the summation in Th(f) for k > 0 when

(3.5) If (Nh)l (I O(e-h)) < e/3

Then we may expect that

h f (kh) 0O h e
k=N+1 k=N-l '

(3.6) 
= eO(lN -)h

-O(e =

That is, we ray expect the tail of the series to be of the same order of

magnitude as last included term. In order to avoid stopping the algorithm

at or near a zero of f in practice, we make the more reliable test

(3.7) f(Nh) + If((N+l)h)i + if((N+2)h)I <E

Similarly, the suns on the right hand sides of (2.6), (2.10) and (2.14)

share the properties of the trapezoidal fornula on the right hand side of (2. 1),

under the assurmptions of (2.8), (2. 11) and (2.13) respectively, which correspond

Pto the assumption (2.3).

P,

-- .-
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4. EXA hLES.

The examples of this section illustrate the applications of each of the

formulas (2.1), (2.6), (2.10) and (2.14). Each of these formulas may be

represented as a single approximating formula

L

(4.1) f f(x) dx ; h I wk,(h) f(zk (h))
r. k---K

The results of various exanples are tabulated in Table 4. 1. In this table we

tabulate the integral to be approxin'ated, the exact value of the integral, the

nethod of auadrature used, EIPS, a parxreter specified by the user and uhich

is the of tne previous section, K,L (see Eq. (4.1)) and the final

approxiat ion achieved.

In the third last and second last entry of Table 4.1 it was not possible

to achieve the accuracy of e . This phenomenon occurs due to a pitfall in

computations; such pitfalls and ways of circunventing these are explained in

the next section.

1.



__TABLE 4. 1 EXAMPLES

~ABSOLUTM'VALUM
INTEGRAL METHOD EXACT EPS K L ERROR 1N

USED* ANSWER FINAL APPROXIMAT

SJ eX dx Eq. (2. 1) 10-7  18 18 < 0-

-10 -16 36 36 < 10

1 x-

. + dx Eq. (2.14) 10 -  78 42 < 10-

0 10-9  180 108 < l0 - 1 6

kx e-Xdx Eq. (2. 10) o 10-16 648 312 < i0-16
0

0 I-- dx Eq. (2.6) .1011 114 114 < -12

' log[ Sin(x)]e -Xdx Eq. (2.10) -3.045689266 10-14 168 132 < 10-16
f0 x 50352

2I (3_2xx2)_ dx Eq. (2.14) 10- 3  12 18 < 10-4i

10-  21 36 - 10-

2 Ix-9
2f 2 x Eq. (2.14) 1010 180 108 9 10-9
J0 [x(4-x)I

2f 0J eX(l+ 2eX) dx Eq. (2.1) Tr 10-16 168 324 < 1071
(+ eX)

*All computations were carried out in double precision floating point arithmetic.

?1.P
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5. PITFALLS OF CIPLTATION.

The accuracy of the formlas (2.1), (2.6) (2.10) and (2.14) in spite of

possible singularities at the end-points of an interval, is based on our being

able to accurately evaluate the integrand in a neighborhood of these singularities.

'Lhis is Cspecially important if (as is often the case for sinu.ar integrals)

a major contribution to the value of the integral occurs in a neighborhood of

the singularity.

The need for exercising care is illustrated by considering the exaPle

(5.1) I = 2 (3-2x-x 2 ) dy

.. ich is one of the exa-pies in Table 4. 1. Direct application of Eq. (2.14)

to the approximation of I results in the formula

L ekh 2
(5.2) I 4h X • [3-2Zk(h)-zk(h)-

* ~k=-K ( 1

where

ekh -

(5.3) e -1h
e +1

The points zk(h) cltucer near x = 1 (resp. near x -1) for k large

and positive (resp. large and negative). Since 3-2x-x 2 = 0 vhn x = 1

this results in an error when substituting directly into (5.2) to evaluate

this quantity. For example, if h = , k = 36 we find, v.nring to 8

significant fi.gures, that z36 ( ) .9999 9997 , and thatz2 I-
[3- 2z (h)-zk(h) (.Ov ) 0]2)-  = 28-6.7503. On the other hand, if x is

) z* 1 0"'( 1
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given by the right hand side of (5.3), we get [3-2x-x21- = (k)(e"h + l)(2e+l)
-A

= 2864.8728, which is correct to 8 significant figures. We emphasize that

the discrepancy is due to the loss of significant figures in the evaluation of

zk(h) via the use of (5.3).

An additional error occurs in the evaluation of the sum in (5.2). In terms

of zk(h) , this sun may be written in the form

L 2
(5.2)' I a 2h I {l-zk(h)}[( 3 +zk(h))(l-zk(h))]-2

k=-K

The trouble occurs in the cocputer division of two nwbers, both of which are

close to zero; thile the nunerator term {1- zi(h)} expressed in the form

2ekh [l+ekh1 2  is accurately evaluared, the denominator term is not, since the

quantity I - z,(h) only has 1 significant figure of accuracy.

For these reasons it was not possible to achieve an error < 10-5  in the

evaluation of I via (5.2).

If we replace x by l-x in (5.1) we get the integral

12
(5.4) J -2 0 21

When the approximated via (2.14), we get the formula

L kh

( 5 a! 4 I

k--- (I

I i- " " II II - here.. .L ,,
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The integral J is the second last integral in Table 4.1. Th1e singularity of

the Integrand which was at the point x = I in (5. 1) has now been transformed

to the point x = 0 in (5.4). In contrast to the loss of significant figures

encountered in the evaluation of Zk(h) via (5.3), the evaluation of zk(h)

via (5.1) can be carried out quite accurately. Nevertheless, using double

precision, we were still only able to achieve 10 significant figures of

accuracy in the approximation of J via (5.5). The reason for this is the

same as tbat involving the discussion of (5.2)', namely requiring the computer

to evaluate the ratio of =.,o very sm.ll corputed quantities, each having a

slight error.

Finally, let us replace x in 5.1 by (eX-l)/(eX+1) We then get the

integral

(5.7) H E 21 (1 +2ex) -- dx
-= 1 + e X

We now approximate H via (2.1), to get

L e k h e k h
(5.8) H :!2h I k -. (1+4eY

k-K 1+ e

In the expression (5.7), the singularity of the integrand has been analytically

reoved. We thus get the integral in the last entry in Table 4.1. There is

now no problem in approximating H via (5.8) in double precision to get 16

significant figures of accuracy.

ix
* -

= 5.-.--
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6. SLIBROLINE FOR ALfO MATIC INTEGRATION.

The FORTRAN subroutine for evaluating one of the integrals (1. 1)- (1.4)

is called by the statement

WNEW(INTRVL,EPS,A,B,IP)

Definitions of Parameters and Required Function Routine.

(a) General. INTRVL,A,B are used to desigate the domain of integration,

and which integral of (1. 1)-(1.4) is to be evaluated.

EPS is a small positive n2er, specified by the user. This

is the accuracy to wnich the integral is to be evaluated.

IP is an information parameter.

FN is the name of a user supplied function, having the

form FUNCMTO FNZ(X)

(b) More detailed descriptions.

INTrVL = I means that the integral (1.1) is to be evaluated.

user sets A= B = 0.

LNTRVL = 2 means that the integral (1.2) is to be evaluated.

User sets A = desired numerical value as in (1.2), B = 0

INTRVL = 3 means that the integral (1.3) is to be evaluated.

User sets A = desired numerical value as in (1.3), B = 0

IINML = 4 means that the integral (1.4) is to be evaluated.

User defines the nunerical values of A and B as in (1.4).

*
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IP is a printout information paramter selected by the user. It is

possible to have the following lines printed, depending on values of IP

(0 , I or 2) chosen by the user:

(i) H LER UPPER T N

(ii) D9.4 K L D20.10 D20.10

(iii) CON RMCE , THE FINAL APPROX1ATION IS D30.17

(iv) DflNSIO-N EXCEDED

If IP = 0: all printouts are suppressed;

IP = 1: normal printout occurs. This includes lines (i) (a line of headings),

(ii) (one or more lines of irbers under the headings (i)), and one

of (iii) or (iv) depending on whether or not convergence is

achieved;

IP = 2: only line (iv) is printed, if convergence is not achieved.

Let us briefly explain these parameters in connection with what the program

achieves.

Let us denote an arbitrary integral (1.1)-(1.4) by I

The approximations T and M of I take the form

L
(6.1) T ( Th) = h I wk(h)f(zk(h))

k=-K

L
(6.2) M(= )=h Y w2,-,(h/2)f(z2k-l(h/2))

k=--K

- r ..-
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The numerical values of H h K ,L ,T and M in line (ii) above are

the parareters in (6.1) and (6.2). The integers K and L are chosen by

I the progran (e.g. for T) such that

-K+3
(6.3) X wkh)f(zk(h))I < EPS/3

~k=-K

L~(6.4) Wk(h ) lf(Zk(h))j < EPS/3.

. k=-L-3

Notice &t

(6.5) Th/2 =

* Convergence occtzs, xn.d the printout (iii) follow-s if the two inequalities

(6.6) ITh -M: < EPS/3

* and

(6.7) K + L + 1 < 5000

are satisfied. In this case the number Th/2 given by (6.5) is printed out

in line (iii). If it is not possible to achieve the requirements (6.3), (6.4)

* and (6.6) ,ithout violating (6.7), the error nessage (iv) results.i

A "suimary" flowchart of the integration routine is given on the following

page.

VAr A --



SBP M1R'1TINE t.NEV -- F[.OLCHART

H=l

EPS=-PS.3

CALL GEN -- Generate nodes x. (h) and corresponding

weights w (h) for the upper sumL - -. . . . .. . . . . . . . . . .... . •

Find MAXUP so that K W (h)If(x.(h))I < EPS3:
5LXUP -

and compute U wi(h) f(xi (h))

CALL GEN -- Generate nodes and corresponding weights
for the lower sum

MfAXL1t'7+3
Find MAXLOW so that w (h) f (x.(h))I < EPS3

and compute L = i=MIAXLOWj(h) f1(x(h))

T - U+L

CALL GEN%,Y Generate xi(h/2) and corresponding weights wi(h/2)

with i odd and satisfying 2 %MXLOW + 1 f- i , 2 AXP - 1

MAXUP-1

M = w2 i 1 (h/2) f(x21 -1(h/2))
1=MAXLOW

i *
T (T + !)/2

• TO

- MI EPS3 ...... PRINT T STOP
, A

H H1
Y

, :MXUP - 2 MAXUP
MAX.OW = 2 MAXIOW

T =T

'I I I I I II.... .
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7. FOMR'A4 LISTING OF TNEW.

In this section we give a detailed FOIMR listing of the subroutine

UNEW. A number of co=nts are given, which should be helpful to the user

of this routine.

1.l

ErJ

i . .. . I I-
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SUBROU II2E WM- 4(INT, EPS, AB, IP)

C IZE IS 11E MAIN SUBR0TJUINE FOR QUADPAXURE.

C LNT=1 SIGNIIES AN INFINITE INTERVAL - THE REAL LIME.
C T--\' SET A=B&=O
C 1NTh2 AND LNT=3 SIGN4IFIES A SEMI-NF114IITE LVMEVAL
C (A. LT. X). THEN SET A AS THE tEFT HAND EM POIZT AMD
C B=-O.
C M=r4 SIGNIFIES A FINITE INTERVAL (A.LT.X.LT.B)
C THEN SET AAS TH1E EFr ADB AS THE RIG1TEN\D
C POINT.
C EPS--DESIPED DIFFERENCE BTI %=E THE TRAPEZOIDAL AND

1. C DPOItT APPROMATIO*NS.
C FN'SZR SMPLIED FlJNC]21 OF 11-E FORQM 'FtNCVION F.(X).
C IP=O ST2PRESSES AIL PRI%'LT'?.
C IP--l FOR 'ORXL PR~hTO=.
C IP=2 FOR ERROR DCAO;C .

C V04~E CALLS SUBPOUTlINE -EZ FOR THE INITIAL
C C~LCI1.AIC~OF THE TRAPEZL2F APR)IM~TION, AND

C THEREAFTER CAllS SUBId)UTINE CU FOR Ur-, APPROKINXTIOJ
C OF THE I'M.PODNT APPROMM'19T0.

DTLICLT Dg,.3ZSU pR,\ECjSjIj (A-,,,O-Z)
DDENSION !.;El(5000) ,V'AL(5000)

C INITIALIZE DATA.

IF(IF.EQ.J.) TYPE 900
H=l. ODO
EPS3--EPS/3. ODO
S124=0.0 DO

D=DSQR(2. 000)
TiAXP--4 8

NBEG-1
IF(INr.EQ. 1)SUM=FN(O.0DO)
IF (I07.EQ. 2) StFN (A+. .ODO)
IF(L\-T. EQ. 3) SUIIT=EN(A+D)G (L.ODDO+D)) /D
IF(NT. EQ. 4) SU,"-(B-A) *Fl((A+B)/2. ODO)/. ODO



21

C U41TIAJ.JZ THE UPPER TAIL OF THE TRAPEZOIDAL APPMMAXI?,FON
10 CA~I GEN(INT, 1, NBE,,MAXP,A,B,UEIT, VAL)

I=0
CHEK=o. O

DO 30 K=-NBEG,M

EVAI -iEIT (K) *FN (VAL (K))
fl=DABS (EVAL)

WvEIT (K) =MVAL
IF (I. LT. 3) GO TO 30
LF(CHEK.Gr.EPS3) GO TO 20

NBEO=l
1.EAAX 09M,4X 48)

00 TO 35
20 QC=0 -0D0

I=0
30 CaXi MIE

IF N)C. 5000) GO TO 110
GO TO 10

35 DO 36K=APl-
36 St 2-S-C.2-T. ZI:(K)

C INITIALIZE THE MIER TAIL OF THE TRAPEZOIDA8L
C APP cEM'ATIcN.
40 CALL GN(INr,2,BEG,AXL,A,B,4JEIT,VAL)

1=0
CEK=0 . ODO

DO 60 K=NBEG,1i

EVAL-WEIT(K)*FN(VAL(K))
WEIT (K)=EVAL
>-DABS (EVAL)
CHEK=CHEK+D

IF(I.LT.3) GO TO 60
IF(CHEK.Cr.EPS3) GO TO 50
MAXL-K
GO TO 70

*50 CHEK=0.ODO

60 CONTLNTJE
NBEG=MAXL+1

IF(AWL.+?AXP). CGr.5000) CXOTo 110
00 TO 40

70 DO 75 KMX,,1
75 SLMi=SU', f1+7V"tT (K)
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C C(MIE ITE lThPOIW, APPRflATION
M 4m
%12= a+1
N RI;%Txx+: AXm

HOV2H/2 .OD
CALL GEM4(INT, NTM,NT, HOV2, H,A, B,WEIT, VAL)
SUM0. ODO
SuLMo. ODO
DO 85 K=1,HI.

85 S~fSkEIT(K)*F(VAL(K))
DO) 86 K R~,2,-

86 SU4,IISUma*!E1Ic T(K)*FN(VAL(K))

TSTR= (APXTl+AP:.C- 0/2. ODO
IF(IP.EQ.1)-fT,,E 901,M~,AXlMAX ARC

IF DAS (PC-AX>: .LT. ES )GO TO 100
CSET Lp DATA FO- T TR.J&i

?r=HOV2

APXT=TSTR
IF(TRM. Cr.5000) GO TO0 110
G0,10 80

C REPORT COVROENCI
100 IF(IP.EQ.1YIYPE 902, TSTR,

RETMN

C REPORT FAILUE TO OBTAIN CONERGL2NTC
*110 IF(IP-.c1.O)7pE, 903

900 F0R-1A.T(7X-,,'H' ,7X, 'LO.ER' ,3X,'UPPER' ,1X,'T',19X,'M',/)
901 FXWAT(3X,D9,4,218,2D20.10)
902 FORIAT(5,X,'C0NV~ENC,THE FINFX APPVXATIMY IS' ,D30-17)

* 90:3 FO!Mt4T(5X, 'DDIENIONS M>CD1'
END

B SUBP&)JTIE GEN(INT, INF, NBEG,MAXPA, B,WEIT, VAL)
LPL1CIT DOUBLE PRE-ClSION,(A-H,0--Z)
DTnYSION T1rIT(5000) ,VAiJ(5000)
E-2. 71828138459045235361)0

C CAIL[7LATI()N OF THE W~EIGTwrS KID NODFS FO1R Tr". TWAEZOIDAL
C RLU
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LE;TE I-\ERVAL

IF(INF.EQ.2) CO TO 6
DO 5 K=NBEG,MAX,
WEIT(K)=l.ODO
VAL(K)=DFLOAT (K)

3 CONnTNU
RETULRN

6 DO 7 K=NBEGJ4AX
WIT(K)=l. ODO
VAL(K)=-DFLOAT(K)

C ST,'I, INFINIT E LNM-RVA L
10 11-IT NE) =EdBEG

DO) 20 KNE-- A
WElT (K)--4vEIT(K-1)*E

20 CONTI~ IE
IF (INF. EQ. 1) 00 To 22
DO 21 K=Ne,,-aX;l

21 IEIT (K) =1. ODO/IEIT (K)
22 IF(LiYT.EQ.3)CO TO 26

IF(IN,,hEQ.4)GO TO 30
DO 25 K=N,-3EGmA

25
4 RETUN

26 DO 29 K=N,\BEG,AX
~WEIT(K)
P01DSQRT () *DSQRT (1. ODO /J+"
IF(W.LT.0.100)GO TO 27
VAL(K) =A4Dt0G(W+afi)
0O TO 28

27 W2=((-429.DO/3O72O. DOM1+231. DO/13312. DO)'W.-63. D012816.DO)*W1
W62=(((W2+35.DO/1152.DO)*W1-5. DO/112.DO)-,Aq+3.fl/4O.DO)-.,1

28 W~EIT (K)--/G
29 CONNE

C FIITE INTERVAL
30 BIN T=B-A

DO 40 K=.'BEG,TiAx
DENKCIT (K)+l1 ODO
VAL (K) =(A+B*W,.E IT (K)) DF7NA
W IT (K) = 3 W-VE IT (K) /(DE1 DcIM)

40 CCOMTINU
RETURN
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SUBROLTLNE C~!ITIR NR O?,HA WI VL
IMPLICIT DOUL-E PP.ECISION(A-H,0-Z)
D 'iNSION TWEI k5000) ,VAL(5000)

C CMLCUATION OF THE WEIGHTS AND NODES FOR TME 1,,-DPOIINT RILE

C INFINITE INVERAL
IF(INT.GE.2) CGO TO 20
WEIT (1)=1. ODO
VAL(1)=DFLOAT (LHUI) *HOV2
DO 10 K=2,NRM
WEIT (K) =1. ODO
VAL (K) =XAL('K- 1) 4H

LO c 0L-- N E

C S 7-iZ NINTEItERvAL
20 E~rhi=DE)Tk,' )

1WET 1) DEP (FLAT 1+ThN) *HOV2)
DO 30 K=2,,?FR-M
TE1T (K) =WE1i (K-1-) 'EXPH

30 CONTINE
1 -7(INf. EQ. 3) GO TO 3 6
IF (L\'r.EQ. 4)_GO 110 40
DO 35 K1N~

35
RE ThR

36 DO 39 K1NR

;n--DSQRT (1. OD+.ga)
IF(1. LT. 0. 1DO) GO TO 37
VAL(K) =DIX (!-,W3) +A
0O TO 38

37 142=( (-429. DO/ 307?0. DO-,W1±TI23L. D/ 13312. DO)' l- 63. DO/2816. DO) -'Uri

VAL(K)= ( (W2-1. .DO/6. DI)1'WVl+I ODO) II4A
38 1C IT (K =141W3
39 CONTINUE

C FINITE MNERVAL.
40 BMA=B-A

DO 50 K=1,!\NTI-
DTPW4- WE I T W +±1 . DO0

VALW (+F,- D, ,-1.ODO) /Di
I M IT (W = B V ()EZ i1 I. O) (D FN, , E LZ

50 WC4 , \1

END
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